59 research outputs found

    Ectopic Wnt/Beta–Catenin Signaling Induces Neurogenesis in the Spinal Cord and Hindbrain Floor Plate

    Get PDF
    The most ventral structure of the developing neural tube, the floor plate (FP), differs in neurogenic capacity along the neuraxis. The FP is largely non-neurogenic at the hindbrain and spinal cord levels, but generates large numbers of dopamine (mDA) neurons at the midbrain levels. Wnt1, and other Wnts are expressed in the ventral midbrain, and Wnt/beta catenin signaling can at least in part account for the difference in neurogenic capacity of the FP between midbrain and hindbrain levels. To further develop the hypothesis that canonical Wnt signaling promotes mDA specification and FP neurogenesis, we have generated a model wherein beta–catenin is conditionally stabilized throughout the FP. Here, we unambiguously show by fate mapping FP cells in this mutant, that the hindbrain and spinal cord FP are rendered highly neurogenic, producing large numbers of neurons. We reveal that a neurogenic hindbrain FP results in the altered settling pattern of neighboring precerebellar neuronal clusters. Moreover, in this mutant, mDA progenitor markers are induced throughout the rostrocaudal axis of the hindbrain FP, although TH+ mDA neurons are produced only in the rostral aspect of rhombomere (r)1. This is, at least in part, due to depressed Lmx1b levels by Wnt/beta catenin signaling; indeed, when Lmx1b levels are restored in this mutant, mDA are observed not only in rostral r1, but also at more caudal axial levels in the hindbrain, but not in the spinal cord. Taken together, these data elucidate both patterning and neurogenic functions of Wnt/beta catenin signaling in the FP, and thereby add to our understanding of the molecular logic of mDA specification and neurogenesis

    The foxa2 Gene Controls the Birth and Spontaneous Degeneration of Dopamine Neurons in Old Age

    Get PDF
    Parkinson disease affects more than 1% of the population over 60 y old. The dominant models for Parkinson disease are based on the use of chemical toxins to kill dopamine neurons, but do not address the risk factors that normally increase with age. Forkhead transcription factors are critical regulators of survival and longevity. The forkhead transcription factor, foxa2, is specifically expressed in adult dopamine neurons and their precursors in the medial floor plate. Gain- and loss-of-function experiments show this gene, foxa2, is required to generate dopamine neurons during fetal development and from embryonic stem cells. Mice carrying only one copy of the foxa2 gene show abnormalities in motor behavior in old age and an associated progressive loss of dopamine neurons. Manipulating forkhead function may regulate both the birth of dopamine neurons and their spontaneous death, two major goals of regenerative medicine

    Membrane Potential-Dependent Modulation of Recurrent Inhibition in Rat Neocortex

    Get PDF
    Dynamic balance of excitation and inhibition is crucial for network stability and cortical processing, but it is unclear how this balance is achieved at different membrane potentials (Vm) of cortical neurons, as found during persistent activity or slow Vm oscillation. Here we report that a Vm-dependent modulation of recurrent inhibition between pyramidal cells (PCs) contributes to the excitation-inhibition balance. Whole-cell recording from paired layer-5 PCs in rat somatosensory cortical slices revealed that both the slow and the fast disynaptic IPSPs, presumably mediated by low-threshold spiking and fast spiking interneurons, respectively, were modulated by changes in presynaptic Vm. Somatic depolarization (>5 mV) of the presynaptic PC substantially increased the amplitude and shortened the onset latency of the slow disynaptic IPSPs in neighboring PCs, leading to a narrowed time window for EPSP integration. A similar increase in the amplitude of the fast disynaptic IPSPs in response to presynaptic depolarization was also observed. Further paired recording from PCs and interneurons revealed that PC depolarization increases EPSP amplitude and thus elevates interneuronal firing and inhibition of neighboring PCs, a reflection of the analog mode of excitatory synaptic transmission between PCs and interneurons. Together, these results revealed an immediate Vm-dependent modulation of cortical inhibition, a key strategy through which the cortex dynamically maintains the balance of excitation and inhibition at different states of cortical activity

    A Computational Study on the Role of Gap Junctions and Rod Ih Conductance in the Enhancement of the Dynamic Range of the Retina

    Get PDF
    Recent works suggest that one of the roles of gap junctions in sensory systems is to enhance their dynamic range by avoiding early saturation in the first processing stages. In this work, we use a minimal conductance-based model of the ON rod pathways in the vertebrate retina to study the effects of electrical synaptic coupling via gap junctions among rods and among AII amacrine cells on the dynamic range of the retina. The model is also used to study the effects of the maximum conductance of rod hyperpolarization activated current Ih on the dynamic range of the retina, allowing a study of the interrelations between this intrinsic membrane parameter with those two retina connectivity characteristics. Our results show that for realistic values of Ih conductance the dynamic range is enhanced by rod-rod coupling, and that AII-AII coupling is less relevant to dynamic range amplification in comparison with receptor coupling. Furthermore, a plot of the retina output response versus input intensity for the optimal parameter configuration is well fitted by a power law with exponent . The results are consistent with predictions of more theoretical works and suggest that the earliest expression of gap junctions along the rod pathways, together with appropriate values of rod Ih conductance, has the highest impact on vertebrate retina dynamic range enhancement

    A Synaptic Mechanism for Temporal Filtering of Visual Signals

    Get PDF
    The visual system transmits information about fast and slow changes in light intensity through separate neural pathways. We used in vivo imaging to investigate how bipolar cells transmit these signals to the inner retina. We found that the volume of the synaptic terminal is an intrinsic property that contributes to different temporal filters. Individual cells transmit through multiple terminals varying in size, but smaller terminals generate faster and larger calcium transients to trigger vesicle release with higher initial gain, followed by more profound adaptation. Smaller terminals transmitted higher stimulus frequencies more effectively. Modeling global calcium dynamics triggering vesicle release indicated that variations in the volume of presynaptic compartments contribute directly to all these differences in response dynamics. These results indicate how one neuron can transmit different temporal components in the visual signal through synaptic terminals of varying geometries with different adaptational properties

    Split-Cre Complementation Indicates Coincident Activity of Different Genes In Vivo

    Get PDF
    Cre/LoxP recombination is the gold standard for conditional gene regulation in mice in vivo. However, promoters driving the expression of Cre recombinase are often active in a wide range of cell types and therefore unsuited to target more specific subsets of cells. To overcome this limitation, we designed inactive “split-Cre” fragments that regain Cre activity when overlapping co-expression is controlled by two different promoters. Using transgenic mice and virus-mediated expression of split-Cre, we show that efficient reporter gene activation is achieved in vivo. In the brain of transgenic mice, we genetically defined a subgroup of glial progenitor cells in which the Plp1- and the Gfap-promoter are simultaneously active, giving rise to both astrocytes and NG2-positive glia. Similarly, a subset of interneurons was labelled after viral transfection using Gad67- and Cck1 promoters to express split-Cre. Thus, split-Cre mediated genomic recombination constitutes a powerful spatial and temporal coincidence detector for in vivo targeting

    Widespread Contribution of Gdf7 Lineage to Cerebellar Cell Types and Implications for Hedgehog-Driven Medulloblastoma Formation

    Get PDF
    The roof plate is a specialized embryonic midline tissue of the central nervous system that functions as a signaling center regulating dorsal neural patterning. In the developing hindbrain, roof plate cells express Gdf7 and previous genetic fate mapping studies showed that these cells contribute mostly to non-neural choroid plexus epithelium. We demonstrate here that constitutive activation of the Sonic hedgehog signaling pathway in the Gdf7 lineage invariably leads to medulloblastoma. Lineage tracing analysis reveals that Gdf7-lineage cells not only are a source of choroid plexus epithelial cells, but are also present in the cerebellar rhombic lip and contribute to a subset of cerebellar granule neuron precursors, the presumed cell-of-origin for Sonic hedgehog-driven medulloblastoma. We further show that Gdf7-lineage cells also contribute to multiple neuronal and glial cell types in the cerebellum, including glutamatergic granule neurons, unipolar brush cells, Purkinje neurons, GABAergic interneurons, Bergmann glial cells, and white matter astrocytes. These findings establish hindbrain roof plate as a novel source of diverse neural cell types in the cerebellum that is also susceptible to oncogenic transformation by deregulated Sonic hedgehog signaling

    Post-Receptor Adaptation: Lighting Up the Details

    Get PDF
    SummaryThe very first rays of the rising sun enrich our visual world with spectacular detail. A recent study reveals how retinal circuits downstream of photoreceptors ‘functionally re-wire’ to trade-off sensitivity for high spatial acuity during night–day transitions
    corecore